Linking theory and practice for restoration of step-pool streams

Environ Manage. 2009 Apr;43(4):645-61. doi: 10.1007/s00267-008-9171-x. Epub 2008 Jul 29.

Abstract

Step-pools sequences are increasingly used to restore stream channels. This increase corresponds to significant advances in theory for step-pools in recent years. The need for step-pools in stream restoration arises as urban development encroaches into steep terrain in response to population pressures, as stream channels in lower-gradient areas require stabilization due to hydrological alterations associated with land-use changes, and as step-pools are recognized for their potential to enhance stream habitats. Despite an increasingly voluminous literature and great demand for restoration using step-pool sequences, however, the link between theory and practice is limited. In this article, we present four unique cases of stream restoration using step-pools, including the evolution of the approaches, the project designs, and adjustments in the system following restoration. Baxter Creek in El Cerrito, California demonstrates an early application of artificial step-pools in which natural adjustments occurred toward geomorphic stability and ecological improvement. Restoration of East Alamo Creek in a large residential development near San Ramon, California illustrates an example of step-pools increasingly used in locations where such a channel form would not naturally occur. Construction of a step-pool channel in Karnowsky Creek within the Siuslaw National Forest, Oregon overcame constraints posed by access and the type and availability of materials; the placement of logs allowed natural scouring below steps. Dry Canyon Creek on the property of the Mountains Restoration Trust in Calabasas, California afforded a somewhat experimental approach to designing step-pools, allowing observation and learning in the future. These cases demonstrate how theories and relationships developed for step-pool sequences over the past two decades have been applied in real-world settings. The lessons from these examples enable us to develop considerations useful for deriving an appropriate course of design, approval, and construction of artificial step-pool systems. They also raise additional fundamental questions concerning appropriate strategies for restoration of step-pool streams. Outstanding challenges are highlighted as opportunities for continuing theoretical work.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Conservation of Natural Resources / methods*
  • Models, Theoretical*
  • Rivers*